skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cziczo, Daniel J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The role of secondary organic aerosol (SOA) in atmospheric ice nucleation is not well understood, limiting accurate predictions of aerosol indirect effects in global climate simulations. This article details experiments performed to characterize the ice-nucleating properties of proxy SOA. Experimental techniques in conditioning aerosol to glass transition temperatures (Tg) as low as −70 °C using a pre-cooling unit are described. Ice nucleation measurements of proxy organosulfates (i.e., methyl, ethyl, and dodecyl sulfates) and citric acid were performed using the SPectrometer for ice nucleation (SPIN), operating at conditions relevant to upper-tropospheric cirrus temperatures (−45 °C, −40 °C, −35 °C) and ice saturation ratios (1.0<1.6). Methyl, ethyl, and dodecyl sulfates did not nucleate ice, despite dodecyl sulfate possessing a Tg higher than ambient temperature. Citric acid nucleated ice heterogeneously at −45 and −40 °C (1.2<1.4) but required pre-cooling temperatures of −70 °C, notably colder than the lowest published Tg. A kinetic flux model was used to numerically estimate water diffusion timescales to verify experimental observations and predict aerosol phase state. Diffusion modeling showed rapid liquefaction of glassy methyl and ethyl sulfates due to high hygroscopicity, preventing heterogeneous ice nucleation. The modeling results suggest that citric acid nucleated ice heterogeneously via deposition freezing or immersion freezing after surface liquefaction. We conclude that Tg alone is not sufficient for predicting heterogeneous ice formation for proxy SOA using the SPIN. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Free, publicly-accessible full text available December 9, 2025
  3. Abstract. A new inlet for studying the aerosol particles andhydrometeor residuals that compose mixed-phase clouds – the phaSeseParation Inlet for Droplets icE residuals and inteRstitial aerosolparticles (SPIDER) – is described here. SPIDER combines a large pumpedcounterflow virtual impactor (L-PCVI), a flow tube evaporation chamber, anda pumped counterflow virtual impactor (PCVI) to separate droplets, icecrystals (∼3–25 µm), and interstitial aerosolparticles for simultaneous sampling. Laboratory verification tests of eachindividual component and the composite SPIDER system were conducted.Transmission efficiency, evaporation, and ice crystals' survival weredetermined to show the capability of the system. The experiments show theSPIDER system can separate distinct cloud elements and interstitial aerosolparticles for subsequent analysis. As a field instrument, SPIDER will helpexplore the properties of different cloud elements and interstitial aerosolparticles in mixed-phase clouds. 
    more » « less
  4. null (Ed.)
    Abstract. Glaciation in mixed-phase clouds predominantly occurs through theimmersion-freezing mode where ice-nucleating particles (INPs) immersedwithin supercooled droplets induce the nucleation of ice. Modelrepresentations of this process currently are a large source of uncertaintyin simulating cloud radiative properties, so to constrain these estimates,continuous-flow diffusion chamber (CFDC)-style INP devices are commonly usedto assess the immersion-freezing efficiencies of INPs. This study explored anew approach to operating such an ice chamber that provides maximumactivation of particles without droplet breakthrough and correction factorambiguity to obtain high-quality INP measurements in a manner thatpreviously had not been demonstrated to be possible. The conditioningsection of the chamber was maintained at −20 ∘C and water relative humidity (RHw) conditions of 113 % to maximize the droplet activation,and the droplets were supercooled with an independentlytemperature-controlled nucleation section at a steady cooling rate(0.5 ∘C min−1) to induce the freezing of droplets andevaporation of unfrozen droplets. The performance of the modified compactice chamber (MCIC) was evaluated using four INP species: K-feldspar,illite-NX, Argentinian soil dust, and airborne soil dusts from an arableregion that had shown ice nucleation over a wide span of supercooledtemperatures. Dry-dispersed and size-selected K-feldspar particles weregenerated in the laboratory. Illite-NX and soil dust particles were sampledduring the second phase of the Fifth International Ice Nucleation Workshop(FIN-02) campaign, and airborne soil dust particles were sampled from anambient aerosol inlet. The measured ice nucleation efficiencies of modelaerosols that had a surface active site density (ns) metric were higher but mostly agreed within 1 order of magnitude compared to results reported in the literature. 
    more » « less
  5. null (Ed.)
    Abstract Atmospheric ice nucleating particles (INPs) influence global climate by altering cloud formation, lifetime, and precipitation efficiency. The role of secondary organic aerosol (SOA) material as a source of INPs in the ambient atmosphere has not been well defined. Here, we demonstrate the potential for biogenic SOA to activate as depositional INPs in the upper troposphere by combining field measurements with laboratory experiments. Ambient INPs were measured in a remote mountaintop location at –46 °C and an ice supersaturation of 30% with concentrations ranging from 0.1 to 70 L –1 . Concentrations of depositional INPs were positively correlated with the mass fractions and loadings of isoprene-derived secondary organic aerosols. Compositional analysis of ice residuals showed that ambient particles with isoprene-derived SOA material can act as depositional ice nuclei. Laboratory experiments further demonstrated the ability of isoprene-derived SOA to nucleate ice under a range of atmospheric conditions. We further show that ambient concentrations of isoprene-derived SOA can be competitive with other INP sources. This demonstrates that isoprene and potentially other biogenically-derived SOA materials could influence cirrus formation and properties. 
    more » « less